A note on exhaustion of hyperbolic complex manifolds
نویسندگان
چکیده
The purpose of this article is to investigate a hyperbolic complex manifold M M exhausted by pseudoconvex domain alttext="normal upper Omega"> Ω encoding="application/x-tex">\Omega in alttext="double-struck C Superscript n"> mathvariant="double-struck">C n encoding="application/x-tex">\mathbb {C}^n via an exhausting sequence alttext="StartSet f Subscript j Baseline colon normal Omega right-arrow M EndSet"> { f j : stretchy="false">→<!-- → stretchy="false">} encoding="application/x-tex">\{f_j\colon \Omega \to M\} such that alttext="f negative 1 left-parenthesis right-parenthesis"> −<!-- − <mml:mn>1 stretchy="false">( a stretchy="false">) encoding="application/x-tex">f_j^{-1}(a) converges boundary point alttext="xi 0 element-of partial-differential ξ<!-- ξ <mml:mn>0 ∈<!-- ∈ mathvariant="normal">∂<!-- ∂ encoding="application/x-tex">\xi _0 \in \partial \Omega for some alttext="a encoding="application/x-tex">a\in M .
منابع مشابه
0 A note on extended complex manifolds
We introduce a category of extended complex manifolds, and prove that the func-tor describing deformations of a classical compact complex manifold M within this category is versally representable by (an analytic subspace in) H * (M, T M). By restricting the associated versal family of extended complex manifolds over H * (M, T M) to the subspace H 1 (M, T M) one gets a correct limit to the class...
متن کاملA Mass for Asymptotically Complex Hyperbolic Manifolds
We prove a positive mass theorem for complete Kähler manifolds that are asymptotic to the complex hyperbolic space.
متن کاملCohomologically Hyperbolic Endomorphisms of Complex Manifolds
We show that if a compact Kähler manifold X admits a cohomologically hyperbolic surjective endomorphism then its Kodaira dimension is non-positive. This gives an affirmative answer to a conjecture of Guedj in the holomorphic case. The main part of the paper is to determine the geometric structure and the fundamental groups (up to finite index) for those X of dimension 3.
متن کاملOn asymmetric hyperbolic manifolds
We show that for every n ≥ 2 there exists closed hyperbolic n-manifolds for which the full group of orientation preserving isometries is trivial. 2000 Mathematics Subject Classification 57S25, 57N16
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2022
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/15907